T TR RO DA o N i TR e e g

SR T T T T € AT T AV PORERY Je £ d s, e - - :
LT F A S RN AO A RS v o A SR MR AN T

e . s g S e

TECHMICAL REPORT O-79-i

IMPLEMENTATION AND EVALUATION OF
INTERVAL ARITHMETIC SOFTWARE
Report 4
THE 1BM 379, DEC 10, AND DEC PDP-11/70 SYSTEMS
by
. Ronnie G, Ward

v

1-64-0 Y L

B L I T e R e

Department of Computer Science
University of Texas at Arlington
Adlington, Tex. 76019

April 1979
Report 4 of a Series

[Approved For Public Ralesse: Distnbut

FUYM L3058 DILAWHLIMNY TTYARILN] JO NOLLVYNIVATZ ANY NOILYANSWITIWI

U R T - 17

£

g e A . T o
%J’" & v‘e’.:/(?“ i :{ Lo ‘t.”f‘;;’ e, Tt Gy - P Rl
mﬁﬁmwmm e RS RS E s 85 BB e R,

)—-
> o ' .
3 8 ‘ Propared for Office, Chisf of Engineess, U S, Ay < .
o Washington, U, C. 20314 : UMl
g L i Conirect Nos. DACASG-76-M-0247 and DACAZ0.76- 00056 - -~
; % - ' Horitaredby Automatic Date Pepcessing Cenlier e §
, U. S, Army Enginesr Wateiways Bxperiment Ststios - L L
% . P. O, Box 63, Vicksburg, iss, 59182+ . .

W

TS S0

e

/i

ypiz

(S)

iy

mnf’

Destroy thiz report when no longsr nesded, Do noi roturs - -
it to the originetor,

v 2

e findings in this report are noi o be construed o= un official
Departinent of the Army position unless so designated
by other authorized decuments,

-
i
v

This progrom is furnished by the Government and is accepted and used

by the recipiant with the express understanding that the United States
Governmean? makes no warranties, exprossed or implied, concerning the
accuracy, compieizness, reliobility, usability, or svitebility for ony
particular purpose of the information and data conteinad in this pro-

grom or furnished in connection therowith, ond the United States shail -
be under no ligbilisy whatsoaver to any persen by resson of eay us2

made theresf, The progrom belongs o the Government. Thesefore, the
recipisat further agrses not 1o csseri any proprietary rights therein orto R
teprossnt this progrom to cayone as other than a Government progrom.

The contents of this report are not to be used for .
advertising, publicotion, or promotional purposes.
Citetion of frode names does not constitute an
official endorsement or approvael of the use of
such commercial products. _

e s - =

P R Y N

by

R N N

¥

= e e H
- e P - P PNy v el

e
- - A A Am " * Lm w1 RTINSO RS b
§ . o Ve
3 Unclassified is U [
g SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterod) ,-':" L i e ’
s READ INSTRUCTIONS

-~ -~ 2. GOVY ACCESSION NOJj 3. R : PIENT'S & LOGW
Technical /Repﬁ-79~l ‘ /"5’7'/’\ ."-/“-69“ 77",1;77

S, TYPE OF REPORT & PERIOD COVERED

:
g
G

\\ 4. TITLE (-ldSubuua) g N e AreAL S e AT s
) IHPLEMENTATION AND EVALUATION OF INTERVAL/ |Report 4 of a series
/|ARTTHMETIC SOFTWARE, Report 4: The IBM // eport & of a serie
379 DEC lp and ch PDP 11/70 Sybtems 6. PERFORMING ORG. REPORT NUMBER
:?\ -;. AU{NB.R_EG;‘%% e e 8. CONTRACT OR GRANT NUMBER(®)
. — N
, | {}"RO“me G.[Ward (5 I DACA39-76-M-0247,
‘ JOF e ~—="\| DACA39-76-M-0356' \~

9. P.ERFOR)M-NG ORGANIZATION NAME AND ADD!RESS 10. l;:g(A;r-t&A=°ERLKEnE:JTT.NPUF;‘OBJEE'(‘:ST.- TASK
University of Texas at Af};ngton. b Integrated Software Re-
Department of Computer Science~ z

3 Arlingeomr~Tex 76079 — search § Development

= ’ - -~ _|Program, AT1]
§\ 11, CONTROLLING OFFICE NAME AND ADDRESS U 12. REPORT DATE /@ - (..,“ ’,’
. Cifice, Chief of Engineers, U. S. Army" Apr3d 879) i ’

Washington, D. C. 20314 13. mm;g“°"“*s /’““=

T4, MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Otfice) 15. SECURITY CLASS. (of thie report)
U. S. Army Engineer Waterways Experiment Unclassified

¢ Station
Automatic Data Processing Center 76, DECL ASSIFICATION/ DOWNGRADING
- : N SCHEOULE

: Vicksburg, Miss. 39180

16. DISTRIBUTION STATEMENT (of thie Report)

e

Approved for public release; distribution unlimited.

N 1 ERARPER A

R Y A T R s et s o N 8
¥
g

AR
L

w

17. DISTRIBUTION STATEMENT (of the abatrac’ entered In Block 20, il different from Report)

¥

1
A

o

18, SUPPLUMENTARY NOTES

e ot o Aot

19. KEY WORDS (Continue on reverze side !f necessary and Identify by block numbaer)

Arithmetic

Computer systems programs
Evaluation

Interval arithmetic

(R Lt et L LSt bl Dl bl) Te-C0 it

20. ABSTRACT (Canthiue as reverse sbée if mecessaty and identily by block number)

This is Report 4 of a series entitled "Implementation and
Evaluation of Interval Arithmetic Software." The series con-
cerned implementation and evaluation of an interval arithmetic
software package on six different computer systems. The other
reports to be published in the series are:

AW

LR

3 /‘)6«/[,fﬁ‘» R T 2 {(Continued)

3 e

: * ' s { . ps)

¢ DD , "5, 173 €cimion oF 1 MOV 8515 OBSOLETE Unclassified .

; SECURITY CLASSIFICATION OF THIS PAGE (Wiren Dats Entered) . *{

f ALY QLY *

2 A

A 1 M)
4 . £
2 ’ 3
‘§_: SR APUS TN A AN ¥ e S - ————— e B . e)
F; *

T - e : ; i

d e

A R .

4 Ia

penns

P

A S
TERTTY m‘v =

UGG s R TR S e

Unclassified
SECURITY CLASSIFICATION OF THIS PAJE(When Dale Entered)

20. ABSTRACT (Continued).

Report 1: The State of the Interval: Evaluation and
Recommendations

Report 2: The Honeywell MULTICS System

Report 3: The Honeywell G635 System

Report 5: The CDC CYBER 77 System

Using interval arithmetic as prescribed in the Interval II
package is simple because of the AUGMENT preprocessor. Computer
runs illustrate that interval arithmetic¢ can show the 1nstab11’ty
of an algorithm for a given set of data, On the other hand, in-
terval arithmetic can establish a high level of confldence in an
algorithm for a given set of data.

Interval arithmetic should be used (as any tool would be)
where accuracy is uf critical importance.

Interval arithmetic is expensive to use in terms of computer
time, main storage, and personnel time spent in error analysis.

Some reasonable means of estimating the cost of using in-
terval arithmetic in a given situation should be developed. These
costs would be important in the decision process of determining
whether or not interval arithmetic would be worth the effort or
not,

Techniques of accuracy extension on short word length
machines should be examined.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

AR K} gt A iy

e g e
bbbt sotrngit e s wa

R L

w

ATHFETFIFT Ry Y PRPLT

AL LR G R L B b LA
A,

G oS

=
kS

PREFACE

In Decowmber 1975, the Automatic Data Processing (ADP) Center
of the U. S. Army Engineer Waterways Experiment Stati»n (WES),
Vicksburg, Miss., submitted a proposal to implement and evaluate
interval aritnnetic, a software system for digital computer numer-
ical analysis, op the Corps of Engineers' primary engineering
computer--the WES Honeywell (635, The proposal was later expanded to
include the implementation and evaluation of an interval arithmetic
software package on six different computer systems. Engineering and
scientific data problems were selected to be used on each of the six
computer; with the interval arithmetic software.

The work was funded by the Office, Chief of Engineers, U. S.
Army, through the Integrated Software Research and Development
(ISRAD) Program, AT11, Engineering Software Research.

This is Report 4 of a series entitled "Implementation and
Evaluation of Interval Arithmetic Software.'" The other reports
to be published in the series are:

Report 1: The State of the Interval: Evaluation and
Recommendations

2 The Honeywell MULTICS System
Report 3: The Honeywell G635 System
Report 5: The CDC CYBER 70 System
This report was written by Dr. Ronnie G. Ward of the Depart-

Report

ment of Computer Science, University of Texas at Arlington. His
work was performed under Contract No. DACA39-76-M-0247, dated

28 April 1976, and Contract No. DACA39-76-M-0356, dated September
1976, and through support from the University of Texas at Arlington
supplied directly through organized research funds. (The project
also benefitted from the work of Dr. Darrell Ward at the University
of Texas Health Science Center.) The work concerned implementa-
tion and evaluation of an inrterval arithmetic software system on
the IBM 370, DEC 10, and DEC PDP-11/70 computer systems.

Dr. J. Michael Yohe, Director of Academic Computing Services,
University of Wisconsin-Eau Claire, developed and wrote the
interval arithmetic software package which was implemented on
each of the six computer systems. Dr. Fred D. Crary, formerly
with the U. S. Army Mathematics Research Center, University of
Wisconsin-Madison, developed and wrote the AUGMENT precompiler
which was implemented on each computer system as a front-end to the

1

Lot LAt

interval arithmetic software package. Dr. Crary also prepared a
series of remarks pertinent to items noted by Dr. Ward in this
report. These remarks are presented in Appendix A; the work in
preparing them was performed under Contract No. DAAG29-75-C-0024.
Dr. Yohe and Dr. Crary are specially thanked and recognized for
their technical contributions and assistance.

Mr. James B. Cheek, Jr., formerly with the ADP Center, WES,
provided initial impetus and guidance for the project. -Mr. Fred T.
Tracy, ADP Center, WES, provided expert advice and technical guid-
ance during the project. Dr. N. Radhakrishnan, Special Technical
Assistant, ADP Center, furnished technical guidance and general
project supervision. The project and the report were monitored
by Mr. William L. Boyt under the general supervision of Mr, v. L.
Neumann, Chief of the ADP Center.

Directors of WES during the project and the preparation of
the report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE.
Technical Director was Mr. F. R. Brown.

Copies of the other reports of the series, computer listiugs
of the interval program and of AUGMENT for each computer systen,
and runs of the benchmarks for each computer system may be ob-
tained from the ADP Center, WES.

Sl i)

PR T

[P———

™o

(i aia kbl kichiiall it
M.

Al O NSS4 AL ARG 9 Gl Y S TR)

CONTENTS

PREFACE . .

DEC PDP-11/70 SYSTEMS
1. Introduction

Organization of this Part .
Summary of Phase 1 Activities

2. AUGMENT Implementation .
General Information

Testing

General Information

Testing

Using an Interval Data Type
. 5. Recommendations and Conclusions

DEC 10, AND DEC PDP-11/70 SYSTEMS
6. Introduction .

Organization of this Part

Addendum to Part I . . ., . .
7. Roundeff and Truncation Error

ey s G

i
]
]
;% : 8. Benchmark Testing
i

: § Comparison of the Machines .,
§ 10. Recommendations and Conclusions
§ PART III: EVALUATION OF BENCHMARK ALGORITHMS
. % INTERVAL ARITHMETIC
1 g 11, Introduction+ . . .
E g Summary Remarks
i 12. Benchmark Accuracy

3 Benchmark Timing
z = Benchmark Storage

13. Conclusions and Recommendations
REFERENCES . L] L] L] . . . * L] . L] L] - - ® L]]

.

Summary of Phase II Activities :

.

Implementation on the.DéC Syatem 10
Implementation on thc IBM System 370 .
Implementation on the DEC PDP- 11/70

.

Implementation on the IéM System 370 :
Implementation on the DEC System 10
Implementation on the DEC PDP- 11/70

.

PART II: EVALUATION OF INTERVAL ARITHMETIC ON THE

USING

.

.

.

.

4. Use of AUGMENT and the Interval Package

.

IBM

APPENDIX A: REMARKS ON SOME ITEMS NOTED IN THIS REPORT

PART I: IMPLEMENTATION OF THE 'AUGMENT' PRECOMPILER AND
INTERVAL ARITHMETIC ON THE IBM 370, DEC 10, AND

.

3. Interval Arithmetic Package Implementation .

370,

Page

4
4
4
S
6
6
6
9

37
37
37
38
39
42
49
56
59

61
61
61
62

63
65

66
67
Al

et s 0t R o

4 minn © —————

PART I: IMPLEMENTATION OF THE 'AUGMENT' PRECOMPILER
AND INTERVAL ARITHMETIC ON THE IBM 370, DEC 10, AND
DEC PDP-11/70 SYSTEMS

1. Introduction

o ™
TR T T

Organization of this Part X
. Phase I of this project was concerned with installing the
E AUGMENT preprocessor [1,2] and the interval arithmetic package

[S,7] on three computer systems -- the DEC System 10, DEC
PDP-11/70, and an IBM System 370, This Part describes results

of this Phase I activity., Section 2 discusses the experiences and
decisions in implementing AUGMENT on the target machines.

Section 3, in a similar manner, presents the approach and

difficulties in implementing the interval arithmetic package on

the three systems, Section 4 discusses the use of the packages
from a programmer's viewpoint, Limitations of AUGMENT and

possible pitfalls in using the interval package are discussed.

A it} e o

Section 5 discusses some recommendations and conclusions,

PR

e b T L s
PPU—

TR IR

Rk A g i ok i

-

Lt Lo R € §
i
i

W
%

Summary of Phase I Activities

Accomplishments -

* AUGMENT was successfully implemented on the
DEC System 10 and the IBM System 370,

* The Interval Arithmetic package was implemented
on all three target computer systems,

® AUGMENT and the Interval Package have been
tested for correct operation, .

]) * Experience has been gained in using the
] : packages, Possible pitfalls are discussed.

Problems -
- ®* Due to storage requirements, AUGMENT could
. not be implemented on the DEC PDP-11/70,
~ '
5 * The logistics of working with three separate

computer systems simultaneously proved to be
a serious obstacle.

Debugging the interval arithmetic primitives
in a batch environment is much more difficult
than debugging them on a timesharing systen,

WA R SO R v i i o
CNy e e v e e

Yoo

|
e RS L L R

A
y
|
|
I
i
|
{
{
]
H
{
|
[——

I e S T e T i S o TN e

2, AUGMENT Implementation

General Information

The implementation of AUGMENT on a computer system is straight-
forward, Eight machine dependent routines [3] must be coded and
executed through a test driver supplied with AUGMENT, The major
problem encountered in implementing the system was that of
working on three separate computer systems simultaneously, The
systens are not physically located at the same site, and they are
not compatible in any respect. This compounds the problem of
transferring material betw-en the systems since it has to be hand
carried and specially processed on each system.

To illustrate this point, the PDP-11/70 has no software utility
to read foreign tapes., So the choices were to write such a

utility or punch AUGMENT into cards for loading on the 11, A

utility was written due to the volume of cards involved,

Implementation on the IBM Svstem 370

{ Moy :

3
3 o
¥
3 The distribution tape containing AUGMENT, the text for the

1 primitives, and a sumple program for AUGMENT processing was

;E received. The last blocks on all three files were "short"

A bk

L

A O U YA (MR AT ATy i 5180 s 017000

blocks, and contained ‘'feee' as the last four characters. This
caused some problems in procesing the tape. Since AUGMENT has
been installed on.a System 370 prior to this project, primitives
already existed and merely had to be checked out.

Subroutine PACK contained a syntax error (unbalanced parens);
MOVHOL incorrectly referenced MINO instead of MING; PACK
incorrectly referenced 'CHARS' instead of 'CHAR'; ORDER
documentation noted the problem with an overflow when testing the
relative orders which could have been circumvented very cleanly
using a logical IF (compare instruction generated) rather than an
arithmetic IF (subtract instruction generated). Finally, the
documentation for STRWDS [3] is ambiguous (because of the
"if's"). It appears that the routine can be called under
different conditions. This is confusing to someone who does not
understand AUGMENT internals,

The primitives, after some modification, passed the acceptance
testing of the driver routine supplied. It should be noted that
this routine performs only a cursory check of the primitives,
However, a more extensive testing routine is probably not needed
since the primitives are so basic to the preprocessor that any
errors in them will likely show up rapidly with any use of
AUGMENT. In the interest of completeness, it should also be
noted that AUGMENT routines MAIN and MOVNUM do not end with

allowable executable statements on IBM's Fortran H compiler.

B, oo e

TP,

AT A it

AUGMENT was installed on an IBM System 370 running under
0S/MVT. Since job scheduling under this operating system is
based in part on core requirements it was decided to overlay
AUGMENT as descrided in [3]). Without overlaying, AUGMENT would
require 306K bytes of storage using the Fortran Gl level
compiler, With overlaying the root phase requires 84K, the
description phase 76k, and the process phase 146K, fhis comes to
a total of 230K needed at any one time for AUGMENT, Hence a
region size of 230K is required, Thus, AUGMENT is executed as a
class C job rather than class D improving turnaround
significantly. Explicit calls to effect the overlaying are not
ueeded since the 0S/MVT linkage editor {18] inserts code to
manage the overlay structure at run time, It should be noted
that linking AUGMBNT;into an overlay structure required 384K
bytes of storage for the linkage editor. This meant that AUGMENT
could only be linked when the computer was relatively idle,

One othordpoini is that upgrading AUGMENT to another version,
for example version 41 to 4J, is rather simple provided the
source files for each of three overlay phases are compiled and
linked separately, A final link is required to create an
executable AUGMENT load module. Experience has shown that
changes can be made more rapidly if the system is maintained as
described.

s e e - P - -
L . N
% g" > '
o, el et
e R e’
Cr Sw Saga gt d et T
Wgﬁ_i{« e traia T Lt s
"

e e e

IR DY FLBVL ot 3 Bwonan,

e e e T

AUGMENT was installed on an IBM System 370 running under
0S/MVT. Since job scheduling under this operating system is
based in part on core requirements it was decided to overlay
AUGMENT as described in [3]. Without overlaying, AUGMENT would
require 306K bytes of storage using the Fortran Gl level
compiler. With overlaying the root phase requires 84X, the
description phase 76k, and the process phase 146X, fhis comes to
a total of 230K needed at any one time for AUGMENT. Hence a
region size of 230K is required, Thus, AUGMENT is executed as a
class C job rather than class D improving turnaround
significantly. Explicit calls to effect the overlaying are not
needed since the 0S/MVT linkage editor [18] inserts code to
manage the overlay structure at run time, It should be noted
that linking AUGMENT-into an overlay structure required 384K
bytes of storage for the linkage editor. This meant that AUGMENT
could only be linked when the computer was relatively idle,

One othor'poini is that upgrading AUGMENT to another version,
for example version 41 to 4J, is rather simple provided the
source files for each of three overlay phases are compiled and
linked separately. A final link is required to create an
executable AUGMENT load module. Experience has shown that
changes can be made more rapidly if the system is maintained as
described.

e T RO

At s b o A e T

AUGMENT's source was maintained on tape at the SYSTEM 10
due to the large number of disk blocks required to store it
on-line, TRIM was used to knock off the sequence fields of the
card images, and PIP with a '/T' switch removed trailing blanks.,
This reduced the disk storage requirements by 60%, but deleting
trailing blanks invalidated Hollerith constants contgining
trailing blanks in DSCRIB (AUG30500) and TRNSCD (A0638900).

The F10 compiler was used on the 10 rather than the F40 compiler
due to the differences in the quality of the object code
produced. This made the FORDDT debugger available which makes
progran check out very simple. Using F10 on AUGMENT established a
pattern of using this compiler throughout the project,

AUGMENT required no overlays on the DEC-10 since & virtual
operating system was being used, A total of 109 sharable and 13
non-sharable 512 word pages are needed for AUGMENT which has a
low paging rate:

Since no overlaying was usei, the entire AUGMENT system is
compiled in one executicn, Under the F40 compiler, the multiple
BLOCK DATA subprograms in AUGMEN" caused a failure during the
linking operation, Under F10 thi: problem does not exist.
However, F10 halked at the IF statement (AUGC1530) in routine
CCNVRT. The CONTINUE on the IF was changed to J=J to circumvent
the problem. Note that the funct.on call contained in the IF

changes AUGMENT's state., So the F cannot be deleted, In other

10

Lis

QR TETTVEEY . TORRRET VR POV MR

e
Lo

o wed

o

;
;
’
g
%
E
%

words, the IF accomplishes something useful even though it
appears to he unnecessary. F10 also puts out warning messages
about modifying a DO index in routines GETSYM (AUG74190), CLEAR
(AUG03255), ENDIT (AUG22930, and AUG22945), and INDEX (AUG30790).

These are warnings and can be suppressed easily.
Impiementation on the DEC PDP-11/70

A first step in the implementation of the AUGMENT preprocessor on the
PDP-11 system was to install and check out the eight
machine-dependent routines in the AUGMENT system (ORDER, MOVHOL,
CCODE, NUMIN, STRWDS, STRCHR, PACK, STRLNG). The machine
dependencies on the PDP-11 were mainly in the handling of A-TYPE
(character) data, The PDP-11 Fortran-F4P (extended Fortran)
compiler was av§ilab1e for use, The handling of characters and
Hollerith constants under this compiler was found to be very
unique, The 16 bit words are u.ed to store two characters and are
filled from the low-order end., Thus a two character Hollerith
constant would be stored with the first character in the lower
half of the word, and the second in the upper., This condition
required modifications in the packing and unpacking of characters
in the above routines, Also the indexing of the characters in a
string could not be linear as the storage locations did not

coincide with the order of the characters in the string. After a

11

e e e e e e

PR

s e ——— Cav . vt Sw e e e - —,

study of the manuals and using test programs to check the
handling of character data, the routines were implemented and
tested using the test driver supplied. As with the System 10,
the ENCODE/DECODE statements were used in implementing the
primitives. Unlike the 10, however, only cne record can be read
with these statements on the 11, Therefore, an explicit loop was
built around these statements making the code more léngthy.
With the machine-dependent features of the preprocessor installed, the
next step was to implement the entire AUGMENT system. The source
for the routines was transferred to the 11 via magnetic tape and
each was compiled separately giving a listing containing the size
of the object code for each, The total of the individual routines
came to approximately 60K words, thus making evident that an
overlay structurz must he developed to allow the installation of
the system on tﬁe 11, which requires a task be no larger than 32K
words,
Since no cross-reference of the calling sequence for the routines was
provided, it was necessary to obtain one. This was done through
the DEC-10 implementation where the routines were also installed,
The cross-reference, along with the source code, was used to find
natural breaking points in the flow of logic for the overlay
purposes,
The root segment for the structure was arrived at first, and consisted

of the main routine; the COMMON blocks, which were located in the

Wi e > n x

3 b A i o AT AR

12

§avimr

Y PPNV PRI B arn R b e o

BLOCK DATA subroutine; and the eight machine dependent routines.
The BLOCK DATA subroutine consisted of a combination of the two
original BLOCK DATA's and the other COMMON hlocks used in various
other routines not formerly in either BLOCK DATA. These other
COMMON blocks were added to the BLOCK DATA subroutine to allow
all of the COMMON blocks to reside in the root segment of the
overlay structure., An initial break down of the proces;or‘was
found at the 'INITAL', 'DESCON', and 'PROCSS' routines called
directly from MAIN, it was then necessary for each of these
three segments to contain all of the routines which could be
called from each of the three routines, Working with the
cross-reference alone proved to be too difficult when prbceeding
through several levels of calls seeking the routines needed for
each segment. It was éherefore found that a more extensive
calling sequence analysis was needed, :

A program was written in PL/I which would accept, as input, the current
cross-reference cons{sting of the name of each routine, its size,
and the names of the routines it called directly. The program
processed the cross-reference by building a structure which was
then traversed producing an exhaustive listing of the routines
and all routines which could possibly be called from each. The
output consisted of the above information for every routine, and
the total size of all of the routines listed as possibly being
called, This revealed some apparent (though fortunately not real)
recursion in AUGMENT hetween routines QUIT and MOVNUM.

The complete analysis provided by the above program considerably

i i)

TR

-

reduced the task of developing an overlay structure, and after
analysis of the original cross-reference and the above
multi-level calling-;equence, a structure was arrived at for the
overlay. The structure consisted of the aformentioned breakdown
helow the main routine with each of the three segments further
broken down, Since the amount of overhead incurred by the use of
overlay on the 11 was not certain, the sizes of the segments were
computed soley on the basis of the size of each routine with an
estimated amount of overhead,

when the overlay description was used in an attempt to link the object
modules into a executable task the overlay description was found
to contain too many names. Therefore the description had to be
reduced by removing common names from segments, where possible,
and moving them to a point in the description such that they
would be path-loaded (see IAS TASK BUILDER reference manual
p.6-4), The search for the common routines was made using the
1istings of the routines contained in each segment and working
from the outward segments toward the root, moving common names to
& point above the segments containing them., Upon completion of
this intersection of the segments, the overlay description was
reduced by approximately 50% and another attempt was made at task
building., When the overlay description was processed the task
overflowed the 32K limit and the need for a further breakdown of

the structure was evident,

14

s

i "
s RW’ ‘WM e

*r

|WWMWQWW’WW'WM1 7

A O A B NG s

U‘f
B TS

Labb i i R

-—

"
|

3
13
E-
[
E.
i
E
E_
£
E
5
N
E_
=
[
v
td
E
=
=
»
=
E
=
£
E
E
£

: ‘fmf\mmm‘memmnﬁ\“mtWmmmv SRR TS PP JSRLUS e s

SRR fien v

o

Norking from the points in the structure where overflow was taking
place, the description was again revised to the greatest possible
breakdown as shown-}n Figure 1 (refer to the IAS TASK BUILDER
reference manual p.5-6 for a description of the overlay
description language)., Another attempt at task building again
resulted in overflow, .

At this point the overlay description was specifying several overlays
for the processing of a single input card by the AUGMENT systen,
and the breakdown of the structure was at its lowest point,
Therefore, an attempt was made, through compilation options, to
reduce the sizes of the individual routines. The code generated
by the compiler to facilitate trace back information for
subprogram calls was suppressed and other options were used in an
attempt to minimize the size of the routines. An attempt task
build at this point still produced overflows. Further reductions
in storage requirements were made at task-build time by reducing
the Fortran I/0 unit numbers to 1-4; the number of active files
to 3; and the file control system buffer size, Task building
failed again however,

Any further reduction of the task size through a further breakdown of
the overlay structure would render the preprocessor infeasable
bacause of the amount of time spent on overlayving during the
execution of the system. It would therefore seem that the next

step would require modifications to the AUGMENT source code to

15

e e e e e
R e o f

TN

APy

fml WP RTRYOR
- ¥ iy

[.

reduce the number of routines by eliminating calls to routines
and placing the code for them in line. A scan of the AUGMENT
source revealed the following routines as candidates: GETP,
OHFNDC, PUTP, GETL, FHHEAD, OHHEAD, SFENCE, CFENCE, CHHEAD,
CLRNUM, CLTEMP, COLMNS, DMCLR, DMSET, SMWIPE, RFNEXT, Bach
routine consist of one or twoassignment statements, and/or a
single call to another routine. Modifications to the s;urce
would require first analysis of the flow of logic in the AUGMENT
system and due to the time element this could not be considered, ;
therefore the installation of the AUGMENT preprocessor on the
PDP-11 was abandoned. However, since AUGMENT produces standard
Fortran, the System 370 and DEC-10 versions of AUGMENT can be
used as host processors for the PNP-11/70.

Another consideration in AUGMENT implementation is the word
size used to repré&ent integers, The PDP-11/70 supports 32 bit
integers, hut this of course requires additional storage over 16
bit integers, There is possibly a problem in routines DOESN and
DOISN with external and internal statement numbers since 16 bits
will only represent values up to 32,768, This value may not be

large enough to accommodate these numbers.

[T ST

16

-t S A G itk o< Lt e e i oty ool St
s

+ROOT MAIN-ORDER-MOVHOL-CCODE-NUMTN-STRWDS- STRCHR- PACK- STRLNG - BDATA-R1
Rl: .FCTR QUIT-MOVNUM- (C1,D1,P1,*SFENCE)
Cl: .FCTR PUTP-PSTOR-PUTI-CLASS-TSTOR-TREINS-TREFND-ALPIHA-(I1,D1)
I1: .FCTR *INITIAL-TPCONV-ODMAKE-STENTR- FDMAKE~TPMAKE-OHMAKE- FHMAKE
Dl: .FCTR *DESCON-FDCODE-GETI-GETL-GETP-GETSYM-NTHR-NXTSTG-PRNTCD-D2

D2: +FCTR READCD-SMATCH-TPFIND-TPFND-TPFNDH-TREFST - TRENXT-ECHO-D3
D3: .FCTR ERRADD-GETTYP-NAMEOK-NXTELT- REFNAM-RFFIND-RFMAKE-D4
D4: .FCTR SEQUAL-RCLEAR-DSCRIB-USESTP-STENTR-TPMAKE-TPTEST-DS

DS +FCTR CNFLCT- (TST1,ENV1)

TST1: .FCTR *TSTCRD-FDFIND-FHFIND-FDMAKE - FHMAKE

ENV1: .FCTR *ENVADD- (TRN1,0PR1,COM1)

TRN1: .FCTR *TRNSCD-FDFLDG-ODCODE-CTYPES-OHHEAD- (*DMOPER, DMTYP1,DMF1)
DMF1: ,FCTR *DMFUNC-FDARGS-FIIHEAD

OPR1: ,FCTR *OPRCRD-ODFIND-OHFNDC-OHFNDS-ODMAKE-OHMAKE-OPEROK
€COM1: ,FCTR FDFIND-FHFIND-FDMAKE-FHMAKE-FCNALL-#CNGEN- (CNV1,COM2)
CNV1: ,FCTR *CNVCRD-CNVFCN-HIGHER-TPCONV

COM2: ,FCTR FCNARG- (*FCNCRD,*FLDCRD-FDFLDP)

Pl: +FCTR *PROCSS-OTCONT-EQUATE-PSTOR-CHKNUM-MKUSED- (CDI1 ,SPR1)
CDI1: ,FCTR *CARDIN-ALPHA-CLASS-GETI-GETL-GETP-GETSYM-PRNTCD-CDI2

: CDX2: .FCTR PUTI-PUTP-READCD-SMATCH-TPFIND-TPFND-TPFNDH-CDI3 :
i CDI3: ,FCTR TREFST-TRENXT-TSTOR-CHHEAD-COPYCD-DMCOMN~-DMSMTB~CDI4 §
: Chi4: .FCTR DMTYPZ2-PROCRD-RFNEXT-SMHEAD '

SPR1: .FCTR *SUPER- (*CLTEMP-*CLRSTK,DCI1,COM3)

DCI1: ,FCTR *DCIMPL-ALPHA-NXTCHR-TPFIND~TPFND-LTRNUM

COM3: .FCTR CLASS-GETI-GETP-TRENXT- (*SETXQT,TSTOR- (END1,CCM4))

END1l: .FCTR *ENDIT-CCLEAR-TREFST-CFENCE-CLEAR-CLRNUM-DECASM-DECEND-END2

END2: .FCTR DECNAM-DECOUT-~DECSTR-DMCOMN-DMSMTB-DMTYP2 -ESN- INDEX-END3
. END3: .FCTR OUTLNF-RFERAS-RFNEXT-SMHEAD-SMWIPE-USED-VERSN-RETGEN-END4 :
! END4: .FCTR GETL -GETSYM-PUTI-CHHEAD-COLMNS-COPYCD-CSTYPE-FDNAME-ENDS :
R END5: ,FCTR + LOADA-MOVPTR-MOVTMP-ORNAME-OUTLIN-OUTPTR-OUTSTR-END6 ,
END6: .FCTR RETEMP-RFLINK-STOREA-TYPEOF)

v COM4: .FCTR ALPHA-NXTCHR-NXTSTG-TREFND-TREINS-ICNVRT-SMFIND-COMS

COMS: ,FCTR SMMAKE- (DCT1,COM6)

DCT1: .TCTR *DCTYPE-GETSYM-ADDIMN-PUTI-PUTP

COM6: ,FCTR TMPLCT-LTRNUM-(#DCSUBR-*COPYCD,PUTI=(COM7,DCF1)},CMN1)

DCFl: ,FCTR *DCFCN-PUTP-STENTR

COM7: ,FCTR GETSYM-{DCXTRN-PUTL-GETL,ADDIMN-PUTP- (*DCDIMN, COMS))

COoM8: ,FCTR CHFIND-CHIIEAD-CHMAKE- (*LCLGBL ,DCCOMN-CADD)

CMN1: .FCTR GETL~OHFNDC-OHFNDS-SMATCH-OUTLIN-OUTSTR-SCANNR-STRPTR-CMN2
CMN2: .FCTR {(®*STDO-CPYREM,CMN3)

CMN3: ,FCTR CNVFCN~FDCODE-FDFIND-FHFIND-GETSYM-HIGHER-ODCODE-ODFIND-CMN4
CMN4: .FCTR CCNVTR-COLMNS-COMPTL-COPYCD-CSTYPE-FDNAME-GENEXP-GENOPR-CMN5
CMNS: FCTR MOVPTR-MOVTMP-NCLOSE-NTRLIN-ORNAME-OUTPTR-PARSE-PCNVRT-CMN6
CMN6: .FCTR PFETCH-PMATCH-POP-PUSH-RETEMP-RFLINK-STFCN-STOREA-TYPEOF-CMN7
CMN7: .FCTR PUTI-CNVECN- (*DCSTFN-PUTP-STENTR-DMCLR-DMMAKE-DMSET,STF1)
STFl: .FCTR *STIF~TPFIND-TPFND-LOADA- (*IFINIT,RECOG-STC1)

STCl: .FCTR FDFLDG-OTTYPES-CLRSUB-CLTEMP-*GENTST-OTGOTO~*CPYREM-STC2
STC2: .gggR (*GENCOD-PUTI- (*STCALL,*STREPL) ,*ST10,*STRETN)

LAy

Kaiied

Figure 1. PDP-11/70 AUGMENT Cverlay Description

. m,, .
i P AP L R DR PR R A AR e 1350 < T e
W , .

17

Pkl D e L

Kl

i

Testing

Testing of the AUGMENT primitives was accomplished using the
test driver supplied with AUGMENT. On the System 370, the
prinitives were checked through hand simulation, On the DEC
systoems', the primitives were verified using dynamic debuggers
[12,13]. Testing of AUGMENT itself was don; usiﬁg the test
program supplied with AUGMENT. No problems were encouni%rqd in
processing this program, There was, however, a misunderstanding
in that the AUGMENT output from this test is not executahle, The
results cf testing the primitives is included in the appendix.

During use of AUGMENT several nroblems were noted, Tables
for blank common were not being initialized properly and since
the System 370 does not clear memory prior to executing a
program, some error messages were issued by AUGMENT when there
was no error, Thi} has been corrected by Dr. Crary in version
4X, Version 4K also corrects a problem of not recognizing DATA
statements properly., This problem was noted on the DEC System 10
and IBM System 370, but only a "comment" type error message was

produced so it was ignored,

16

TR T TR

- 3, Interval Arithmetic Package Implementa...a

General Information

The interval arithmetic package for the 1108 [5] was received
on tape and restored to disk on the System 370, A careful study
of this package and 1108 manuals [15,16] revealed that an
overwhelming number of machine dependent features are éhployed in
the coding, These dependencies have been documented but are not
included here since a more portable version of the package
(INTERVAL 1I) is now available. Because the package would not
convert easily to other machines, and since this project dealt
with three distinct machines, it was decided that time would not
be wasted in adapting this package.

Attention was turned to implementing the machine-dependent
primitives required by INTERVAL I1I. The discussion that follows
is concerned with the implementation of the arithmetic primitives
which perform directed roundings, These were coded from Dr,
Yohe's paper [4]. The source listing of the INTERVAL 1I
primitives and constants are included in the appendicies for all
three machines.

Making corrections to the INTERVAL II package deserves comment,
The package is written using BPA and EXTENDED data types and
therefore must be processed through AUGMENT. The resulting

Fortran requires significant editing to tune the package., Thus,

D A G e RS e o = e e SR R e i L e s L

N « . SN ~ - P - e ST, LA TR et

" changes tn INTERVAL II, such as corrections, can be made at
either the’ AUGMENT input level or the AUGMENT output level. In
view of the tuning required, it is recommended that changes apply
to the AUGMENT output as well as input. This avoids having to

reprocess through AUGMENT and retune the package,
Implementation on the DEC System 10

The five primitives are coded as one program with the entry
points of BPAADD, BPASUB, BPAMUL, BPADIV, BPACEB, The Macro
(assembly language) code was designed for communication with code
generated by the DEC-10 F10 Fortran Compiler, Code compiled by
the F40 Compiler will not interface correctly as the calling
sequences are different. This is documented at the beginning of
the primitive code.

The ACC value is assumed to be 28 in all cases of calls to
BPACEB, Ther; was no extensive informction on error bounds for
the DEC-10 thus double precision results are assumed correct to 28
bits or one more bit than single precision.

The primitives were coded directly from the paper "Roundings in
Floating Point Arithmetic" by J. Michael Yohe. There are some
minor problems that should be pointed out for anyone who would
code from this paper directly. The occurrences of P+l in lines
3, 4, 15, and 16 of table I (p. 580) should be replaced by P,

A Bl et A B WDk w8 I e

20

A s e - [PR

(e e a7 R, TR R T By W . o, BRGNS R 2 N

as the stated consgfnt is not the one that is exactly halfway
between max and the real number whose exponent is EMAX+l and
fraction is B-1, There are several typographical errors which
may slow down the coding procedure significantly. Fortunately
only one such typo occurs in the algorithms portion, It is an
obvious error in Step 6 of the rounding algorithnm,

in implementing the algorithms one should check exponent
overflow first when considering the rounding options applied to
circle (0)., If this is not considered first, one can easily
imploment a round toward zero when in fact the option dictates a
round from zero,

The DEC-10 does not have an infinity representation., Thus
positive infinity is just the largest positive number or

377777777777
in octal and
. 400000000001

for negative infinity,

The DEC-10 presents some interesting problems of manipulation
as negative floating point numbers are in the form of 2's
complement notation for the fraction and 1's complement notation
for the exponent. The approach taken is to convert numbers to
sign magnitude form for the algorithms and then convert back to
DEC-10 representation upon exit from the primitives, Since the
DEC-10 has no sign magnitude add instruction one must adjust to
2's complement form prior to and possibly after the addition,

A final obstacle that should be noted on the DEC-10 implementation
is that of type checking on subprogram parameters. INTERVAL II

21

DKL o e 2

e T

represents intervals as REAL dimensioned by 2. In utilizing the
package, an AUGMENT ‘user must also declare the interval type as
REAL dimensioned by 2 and not COMPLEX as on the System 370,
It is not possible to suppress type checking under the F10
Compiler,

Implementation on the IBM System 370

Before implementing the primitives on the System 370, several
problem areas had to he resolved, A decision had to be made with
regard to the base of the machine, Although information is
stored internally in binary, the exponent in floating point
numbers represents a hexadecimal move on the hex point, An
attempt was made at coding the algorithms of Yohe's paper using
beta as 16, p equal to 6, and m equal to 3. The algorithms
require m to be at least 3 and this meant that the A register
had to carry 9 hex digits. Since a single 370 accumulator can
only accommodate 8 hex digits, significant coding problems were
continually encountered. The base was changed to 2, p to 24,
and m set at 7, The algorithms were then coded successfully
with the A and U registers as single 370 accumulators
(contrary tc the remark on page 579 of the paper).

This change to base 2 introduced some complexity into the packing

and unpacking operations., The hex exponent was converted to

22

.

T T A O

SURL TN TR

binary, and a norma{ized hex number may not be a normalized
binary number. Since an unnormalized number could he passed into
the primitives, at the beginning of each algorithm a normalizing
loop appears which shifts the fraction digits to the left and
decrements the value of the exponent until normalization is
achieved, ‘

The individual algorithms presented little or no d;fficulty,
after several problems encountered in the System 370 were worked
out, The first of these was found in the multiplication
algorithm, After a 32-bit multiply takes place, the second half
of the 64-bit product contains a data bit in the sign bhit
portion. Accordingly,the result should be left shifted one bit
to maintain the algorithm's assumption about the location of the
binary point., In algorithm 4, division, the System 370 divide
places a sign bit in the sign bit portion of the remainder, It
is desirable to place a data bit in this position so that data
bits in the AX register will be contiguous. The result rust be
left shifted one position and the sign of the remainder

eliminated.

The first difficulty encountered in algorithm 5 was a misprint

in the articie. In Step 6 the instruction printed as
"EA=EMIN®**-2%" should have read "EA=EMIN-2", Testingz the rounding
options for this algorithm was a preblem, in that a number of

different cases had to be considered for rounding optivn 4, round

R R AT T
by A e

Lk

T T A R TR T oo ¥ PR P T SKET, S YTy, W,)
A
.

s,
“
s

g R 5 s

S 3

T R e o O e

e s o TR A TITT SR 3

"to the nearest machine number, At first only the two cases of

this option whi~h rounded toward zero were tested and a default
te round away from zero would be taken if these were not found.
However, the case which states that if the absolute value of the
result is greater than or equal to MIN and fhe first digit of the
second register is a zero implied rounding toward zero,'without
taking into consideration the size of the exponent. When the
exponent is greater than MAX, a rounding away from zero is called
for, So a test is made of tpe exponent's value preceeding the
testing indicated in Step 6.

Also in algorithm 5, extra code was added at Step 10 since
the System 370 would expect an exponent expressed to move hex
pointS rather than bits, It is necessary to ensure that the
exponent be a mult{ple of 4, Shifting the result and
incrementing the e*ponent until this is achieved and dividing the
exponent by 4 will generate the proper representation, Note that
this causes the desired rounding to take place again if non-zero
bits are shifted out,

The BPACEB algorithm required a 64-bit addition, which is not
provided on the system 370, The code, therefore, had to make use
of temporary stcrage locations to perform 32-bit additions, save
the carry-out of the answer, and then add it to the upper 32-bits
of one of the addends before continuing the addition., This

accounts for the lengthiness of this code,

24

§ e —————————————_—. £

e

(T AL PIROKOr 203 2y, i+ 1o

Both the checking and debugging of these routines were hampered

by the fact that the System 570 accepts only batch jobs. There
was no way to inturactively debug, and much time was spent
desk-checking the programs and using Fortran subroutines to print
values at various points in execution., The cases in Table I were
cf great value in proving the validiiy of the primitives, but
difficulty was found in producing correct test data with which to
work, Cften one would think that the routines were wrong when
actually the test data was incorrect,

As a final note it is recommended that the System 370 primitives
be extensively optimized before going into any production use,

They can benefit from much tuning,
Implementation on the DEC PDP-11/70

In the PDP-11 a floating point number is stored in two consecutive
16 bit words, There is a 1 hit sign, 8 bit exponent, and a 23 bit
fraction, Since all real numbers are assumed to be normalized

the first bit of the fraction is not present in the floating

[T

point representation. This bit, called the hidden bit, plus the
23 fraction bits gives a 24 bit fraction, In the BPA routines the
hidden bit is placed in the fraction when the number is unpacked.
This makes m=7 (number of exponent bits) and p=24 (number of

fraction bits) in the algorithms. The hidden bit is removed when

25

o
M

DA

S, MGk AAYEY IR TR S

‘the nunber is packed back into floating point format in Step 11
of Algorithm 5,

To implement the BPA algorithms on the PDP-11 three special
routines had to be written; a 64 bit right shift, a 32 by 32 bit
multiply, and a 64 by 32 bit divide, Since the PbP-ll is a 16 bitc
machine it takes two consecutive registers or words of memory to
represent a floating point number, In the discussion th;t follows
the A,X,U, and Y registers are actually two consecutive registers
or words,

The 64 bit right shift routine takes the A and X registers as a
single 64 bit register and shifts it right n places. To do this
the A register is saved in Y then shifted right n places. The
high order bit of the X register is placed into the low order bit
of Y and then the ¥ register is shifted right n places. The Y
register is shifted left 31-n places to get the bits that were

shifted out of A, These bits are then ORed into the X register,

A routine that multiplies two 32 bit numbers and produces a
64 bit product was written for RPAMUL. The A register is saved
in Y and then cleared., Then U (the multiplier) is shifted right 1
bit at a time. If the bit shifted out is a one then Y 1s added to
A and then AX (the product) is shifted right one bit. If the hit
shifted out of U is a zero the Y régister is not added into A,

but AX is still shifted right one place. This continues until all

32 bits of U have been shifted out and tested.
For BPADIV a divide routine was written that divides a 64 bit
dividend by a 32 bit divisor and produces a 32 bit quotient and

L AT A S S B RATOAN | o

e e s

26

s s 0

a 32 bit remainder, The 64 bit dividend in the A and X registers
is shifted left one place, putting a zero into the low order hit.
The 32 bit divisor in U is subtracted from A. If the result is
negative the divisor is added back in, If the re;ult in A is
positive the low order bit of X is changed to a 1, This sequence
of shifting and subtracting is repeated 32 times. Then the A and
X registers are exchanged so the remainder is in X and éhe.

quotient is in A.
Testing

Testing of the interval package on all three machines was
carried out in a similar manner. However, debugging of the
primitives was much simpler on the timesharing systems, The test
driver supplied with the package was run successfully and
produced satisfactory results on all three machines. Output from
this test is included in the appendix,

Additional testing was made by executing Dr. Yohe's factorial

problen {S] and Plat Map problem (illustrated at the conference

in Vicksburg). The FFT benchmark program was also run as a test
case, tput from running all three of these tests on all three
machines is contained in the appendix. FFT run under normal

arithmetic was used as a test comparator, and the output of the

1 - €actorial problem as well as the Plat Map problem were available

QET, <0 WUy TS RTINAT SR N A eI s TUNA Y west

from the 1108 to use as comparators., All machines are producing
satisfactory results for these problems.

A3 a guide to anyone else who implements the primitives using

Dr, Yche's paper it should be pointed out that extensive testing of
the primitives can bhe accomplished using Table I in the paper.
Testing each one of the cases in that table to see if the proper
results are produced generates a secure feeling that th;
primitives are coded correctly, A general driver program that

exercises the jrimitives against this table is highly desirable.

TR RN

T A T A AR e

Y
.

.8

(bl et AR At L+ el A S Sl L
AP

it 3ol

ARG
R

) W
1
o bt e e s

LA Ll

TR

Py

o g1

" ST CT AL O) FEASUA WA WIS Tow s o o1 e o 7

e e

4, Use of AUGMENT and the Interval Package

Using an Interval Data Type

Using AUGMENT for an Interval data type is a simple process
and usually requires a minimimal number of changes to a user
program. The number of changes that a programmer will need to
make depends upon the description of the new data type given to
AUGMENT, However, the description is limited to what the user
has as library routines supporting the operations in the new data
type. To define what is meant by the operations in the new data
type, examine the addition operation, When doing an addition
under standard data types, like integer or real, the machine has
hardwired irstructions which carry out the operation, When
defining a data type not supported by the machine hardware, a
software implementation of it must be made. The implementation
is 'in the form of a subroutine or function which does the
required operation or conversion. This is where the supporting
package routines come in, All conversions, funcfions, and
operations must be defined in the form of subroutines or
functions where operands are passed to it and the results of the
operation are returned,

Once all the operations, functions, and conversions needed by the
new data type have been defined, information must be given to
AUGMENT through a description deck. In the description, the
symbol or name of each operation or function to be recognized and

processed in the user program must be defined. An example would

29

T T T T e T IR TR R

bt

o
v

) wnwil}m jaiadainaity

3
ks
H

8

-‘be '#t for the multiplication operation and 'SQRT* for the square

root function. Next, the name of the supporting package
subroutine or function which will do the same operation on the
new data type must he defined, A specification of the types of
the arguments passed, the priority of the operation, and the type
of the argument returned must be defined. When all the
opsrations and conversions have been defined, AUGMENT i; ready to
process the user's program for the new data type,

Before the writing of the description or the library routines,
another aspect of the new data type must be defined, namely the
data structure of the new data type. On the IBM 370, integers
and single precision floating point numbers are stored in one
word of memory. A éomplex number is stored as two words of
memory with the first word containing the real part of the number
and the second word containing the imaginary part while a double
precision floating point number takes up two words of memory for
the number by itself, When defining a new data type, not only
must the operations he defined btut the way a new data type is to
be stored in memory must also be defined. 1In the case of
Interval Arithmetic, each previously defined real variable will
be stored as two real numbers which are the lower and upper
endpoints of the Interval number. This can be done in many ways
using various standard data type storage definitions to describe
the new data type's storage requirements. The descriptions which
could be used are REAL(2), COMPLEX, INTEGER(2), or DOUBLE
PRECISION because each of these types are allocated two words of

menory. AUGMENT defines the storage for each variable of the new

30

AT 1 e Baa s

ST

Y AT ISP R RS B 0 g S0 o~ 01t

data tvpe to be a multiple of a defined standard type which the
user supplies in the description to AUGMENT. For example, an
INVERVAL array A(10) when defined by ccmplex storage would be
declared COMPLEX A(10) after being processed by AUGMENT, If an
Interval was defined as REAL(Z) then the declaration for the
array A(10), after being processed by AUGMENT would be A(2,10).
This definition maintains a column ordering hierarchy wﬁich
Fortran uses. The problem of storage is simple as long as the
data types are the same in the description of the data types and
the way they are defined in the library routines. If they are
not, then some compilers will generate code that gives errors
because the parameter types of the calling program and the
subroutine do not match at run time, Others may, at run time,
make standard Fortran data type conversions on the parameters
when they are passed or returned, This occurs with the DEC 10
Fortran 10 compiler, An example of this is found in the Fast
Fourier Transformation problem that was implemented., An Interval
was described to AUGMENT as COMPLEX but the supporting package
used REAL(2) to represeant an Interval, This caused the loss of
the right endpoint upon return to the calling program. The IBM
370 Fortran compiler makes no check on the parameters. So as
long as equal storage is defined in the main program and in the
subprogram no error occurs.

To change a standard type variable to a new data type simply
insert a statemeﬂt inés the user program which is similar to
other type declaration statements in Fortran where the type name

is followed by the list of variables to be given the type.

31

TR RS

B 2w sat WAL

o R e e W RET

towever, there are some small limitations when using AUGMENT to
convert a program from a standard data type to a new data type,
One of these limitations is that no tabs may appear in the source
deck because AUGMENT does not process or recognize tabs in the
source statenents. An error results if one is encountered,
Other limitations are that AUGMENT does not process EQUIVALENCE,
DATA, READ, or WRITE statements., AUGMENT marks these séitcuents
in its output with "comment" messages:

¢ smwes EQUIVALENCE STATEMENTS ARE NOT PROCESSED BY AUGMENT ===uw=

C ==m=a DATA STATEMENTS ARE NOT PROCESSED BY AUGMENT =w=u=

C =mans NON STANDARD VARIABLE IN INPUT/OUTPUT LIST ===usa

This does not mean that these statements cannot be used., It
means that AUGMENT does not make any conversion of these
statements. Therefore an understanding of the data structure of
the new data type is needed to ensure the correct alignment of
storage and correct input and output cf the new data type, For

example, if A is an interval data type on the DEC-10,

WRITE (6,50) I; A(l)
50 FORMAT (1X,I4,5X,E14.7)
would have to be recoded by the programmer as
WRITE (6,250) I, A(1,1), A(2,I)
250 FORMAT (1X,I4,5X,1H(,E14.7,1H,,E14.6,1H))

To input or output a variable with an interval data type will

X

mean changing the I/0 statement to read both endpoints or write
both endpoints, On the I/0 statement, a list would have to be
made of the variables using a subscript value for variables that
are scalar if the definition of an interval was REAL(2). If the
definition of an interval was complex then Fortran would be able
to take care of the input and output of both endpoints w;th just
the variable name, FEither way, the format specificatioﬂs would
have to be changed to allow\for an extra value to be read or
printed for each variable in the variable list. With a READ
statement the input data would have to be reformatted and changed
s0 as to represent an interval number,

The programmer must be keenly aware that to change a standard
variable in an EQUIVALENCE statement to a new data type may mean
changing the array size of the variable it is equivalenced to,
For other statements, AUGMENT handles the extra subscript and it
becomes transparent to the user, Changes to other statements may
have to be made if the supporting package routines are not
available for the Qarticular data type desired. As an exampie,
the Fast Fourier Transformation (FFT) generates a set of complex
coefficients for a polynomial, Since there was an interval
package library for a REAL interval number but not for a COMPLEX
INTERVAL number, the complex number was simulated by declaring
the old COMPLEX array as a REAL array dimensioned (2,N) were N
was the old array size, This, by itself, meant changing some of
the code to allow for the subscripts and change the logic from
storing one complex number to storing two real numbers, For
example it is now the programmer's responsibility to keep track

of the real and imaginary parts separately. The FFT statement

33

3, -
e s y_m., . ! 1

S R .
5 ..
L ‘vw\.@' _q\.'
oy P"tﬁ@‘.“."ﬂné f‘\'

a7 ‘f““*”%ﬁf,ﬂf’ﬂ)‘ Jéw* ,4,,.1 X

WP (L)=CMPLX(X,Y)

was recoded inte interval as
WF(1,L)=X
WP(2,L)=Y

This change to the standard non-interval program would §ti11 maintain g
the logic of the algorithm, provided the change is made correctly, :
Once this correction was made, the change from the standard types

to interval were transparent except for the I/0 statements and

EQUIVALENCE statements, The reason this special change was made é
instead of writing another set of library routines to handle a 5
complex interval was that the time needed to write the new library

routines was much greater than the (ime needed to modify the logic of

the one FFT program which was to be converted,

Two other points on using AUGMENT are pertinent. One, the

3 implied comparison to zero used hy the three hranch IF statement:
% IF (arithmetic expresion) labell,lahel2,labell
2
E must be changed to the logical if statement (more than one may be
?} needed) :
IF (arithmetic expression .EQ. 0) GO TO lahel2
3 :
‘
b‘ ; §
i ¥
i H
L g
!

34

. This case is flagged by AUGMENT and is easy to spot and correct,
The second point invelves the manner in which AUGMENT generates
type declaration statements, To illustrate, consider an INTEGER array
that is dimensioned by an INTEGER variable in a subprogram. The AUGMENT

: declaration would be flagged hy the IRM Fortran compiler with an

"order" diagnostic, That is,

N c vwes-s GLOBAL VARIABLZS -----
INTEGER LABEL (NRARG), NRARG

$
#asa% 1) (CODE) ORDER

PSS T

Two easy solutions are to dimension the array with a constant
such as one (1), or to rename the scalar INTEGER variable as

KNARG for example.. This second solution is valid hecause AUGMENT

PORARE I et

produces an alphabetical list of the variables in the generated

ap

declaration.

On a final note, when a run time error occurs, it is usually
detected and printed in INTRAP, The reader is referred to the
appendix for an example of this, The output, however, is
difficult to relate back to the AUGMENT input for a program of
significant size, It is believed that AUGMENT's output will have
to be used in debugging. This means that one should be familiar

with the individual routines in INTERVAL I1, It is useful to have

YR b
O Lk oL RS

a 1ist of routine names, a brief description of their function

and parameters. The reader is referred to {5, Table I, pp.

- aam

78-79] for an example list for the 1108 package.

-
s Lt s
N~ ,.oe§f ..*:j’i.v,,,,“ N

e
- ““‘ﬁfuﬂ“' ‘M" o

. L.

e e e e o ——- ————

§,
:
E
E

i
i

T A Y 2 s cramray

Preamy > VRSN

T T T T T T T S S T

[L e

-5, Recommendations and Conclusions

ik mmpwwmmvwnmnn e 4

The AUGMENT preprocessor and the INTERVAL II package are

working products. Moreover, they are portable to a great extent

with the exception of the machine -dependent primitives. However,

the coding of the primitives is well defined., Specific

recommendations include the following:

1.

4.

AUGMENT can be implemented on a small storage
machine vith suitable restructuring and mod-
ification. Much code can be eliminated that

would significantly reduce the core requirements,

It is belieed that AUGMENT and INTERVAL II
machine dependent primitives can be made

machine independent to a great extent.

The interval 1/0 package {6] is probably a useful
tool to use in conjunction with INTERVAL II in
light of the confidence a programmer has in the
Fortran 1/0 system, This package should be
implemented on the System 370, DEC-10, and
PDP-11/70,

As noted earlier a general driver program that
exercises the INTERVAL II primitives is highly

dosirable,

36

T BEMEA ALY WAL NPT S AT SR T

PART II: EVALUATION OF INTERVAL ARITHMETIC ON THE
IBM 370, DEC 10, AND DEC PDP-11/70 SYSTEMS

6. Introduction

Organization of this Part

The objective of Phase II of the project has been to
evaluate interval arithmetic on the DEC System 10, iBM System
370 and DEC PDP-11/70 computers. Interval arithmetic is a
useful tool in th; analysis of algorithms and hardware [19]. The
quality of the above systems in terms of accuracy is highlighted
by interval arithmetic results on the benchmark programs.
Inconsistencies and wecknesses in hardware design are most apparent.

With the above in mind, this Part has been organized as
follows. Roundoff and truncation error as pointed out by
running Dr. Yohe's benchmark programs is discussed first.

Results discussed here relate to accuracy information supplied
in later sections. Next, the results of the banchmark testing
are discussed. Following, a comparison of the tkree machines

is given in terms of the benchmark program testing., This Part

ends with recommendations and conclusions.

"

T,
e s

fidiies i

o e e e

Summary of Phase II Activities

Important Observations -

® The DEC System 10 is superior to other machines observed

in both interval arithmetic and normal floating point
arithmetic,

The hexadecimal point move employed by the IBM System
370 in its floating pcint representation severely
hampers the wmachine's ability to generate accurate
results in single precision arithmetic. This is
reflected in the interval arithmeti: results.

Using interval ari<hmetic is made simple because of the
AUGMENT preprocessor.

Interval arithmetic, including AUGMENT use, will increase
processing time by as much as a tactor of 50. This 1s
not so on the PDP-11/70 because the time needed for
norral arithmetic operations is large anyway.

Problems -

* With the increased storage required for interval

arithmetic (a factor of 2) and considering the PDP-11/70
storage limitations, it is doubtful that problems of
significant size can be solved on this machine.

* Althcugh testing of the INTERVAL I1 package has been

extensive, a high degree of confidence in the validity
of the results has not yet been established. This should
change with more extensive use of the system.

Use of AUGMENT output in debugging is mandatory and
is complicated by not having a convenient method of
tying the AUGMENT input to its output.

Interpretation of interval widths is difficult when

the situation is not obvious. Guidelines based on
practical experience are much needed in this area.

38

At e LR SOAALU N U2 3R 20 118 30 s e i St e St

~r e o

Addendum to Part 1

Further use of AUGMENT [1] since the writing of Part I has
revealed two additional comments., One pertains to using AUGMENT
with an interval data type. On the DEC System 10, type INTERVAL
is mapped to REAL dimensioned by two, and is mapped to COMPLEX
on the IBM System 370. AUGMENT on the System 10 incorrectly
handles the following declarations:

INTERVAL R1,R2,R1RPM
REAL RR1,RR2,RRIRPM

It does so by failing to produce a declaration of the form:
REAL R1(2),R2(2),RI1IRPM(2)

However, on the System 370, AUGMENT generates correct results.

E That is:

COMPLEX RI,R2,R1RPM
. . REAL RR1,RR2,RR1RPM

The other remark concerning AUGMENT use applies to

debugging a program processed under AUGMENT. AUGMENT maps

E | operations on the new data type to calls in the supporting
g package. It does not, however, relate the output generated
b back to the original source. Since the mapping of source to

output is not on a statement per statement basis, debugging is
an intolerable task. For example, PRINT statements to check

intermediate results between calls oa the supporting package

39

cannot be inserted in the original source program. Thus, the
programmer is forced to use AUGMENT's output. This notwithstanding,
and unavoidable, it would be desirable to have an optional

listing feature such that when turned on, a source statement

would be printed followed by the sequence of statements produced
from it. The pfogrammer would still be required to work from
AUGMENT's output file. However, a listing of this nature would

simplify its use.

Part I of this report fails to mention that the DEC System

10 has no double precision Arcsin and Arccos (DARSIN and DARCQOS)
routines, The single precision routines ASIN and ACOS were used
in implementing INTERVAL 11,

5 Further testing of the INTERVAL II package on the PDP-11/70
has revealed an error in the INTERVAL II constants THPI,
EXPMNA, and FRACBD. The new values for these constants on
the PDP-11/70 are as follows:

THPI /"31371641026/
EXPMNA /-88.028/
FRACBD /''000000046000/

3

?‘ The latter constant invalidated the arithmetic results of the FFT
benchmark using interval arithmetic on this machine. A revised

- version is available at the Waterways Experiment Station (WES).

Fortran under the PDP-11/70 will not permit the printing

of REAL variables using octal output format. The same holds %

for input using the READ or DATA statements. This has been a

o N A <

A 10 AT e 1 et s

K Sl e R s)

bi

BT s e

persistent problem not only in implementing the INTERVAL Il
package and its primitives, but in the testing of the benchmark
programs.

In relation to this problem, values of type REAL must be
BQUIVALENCEd to INTEGER variables for input/output in octal.
However, the 11/70 stores 32 bit integers in memory with the
low order 16 bits'above the high order 16 bits. This ordering
is preserved in octal input/output. Hence, real values must be
interpreted with the sign and exponent flanked on either side

by fraction digits.

11

e T e e e - T

7. Roundoff and Truncation Error

Interval arithmetic can highlight roundoff and truncation
error in a computer. This has been reported on by Dr. Yohe [19].
It is well known that the order in whicl the terms of a

summation are added can affect the accuracy of the result,
When the sizes of- the terms vary significantly, interval
arithmetic will give an excellent idea of the effect of roundoff

error. Computer output from all three systems was produced for

B

i=0

the sum:

for several values of x ranging from -13 to 11. In summing
forward (largest terms to smallest), the interval sums on the
DEC System 10 are as wide as <25 x 8'6. Summing backwards the

interval sums are no wider than .28 x 8'8. This difference

in the interval widths underlines the effect the order of summation
can have on accuracy due to roundoff error. This is even more

true when considering the System 370 where the forward sum interval

: widths were as high as .8,. x 16"% and the backward sum widths

were up to .4;. x 167,

ol
prs

Throughout the remainder of this report the reader will
note significant differences between interval widths on the

, System 370 and the System 10 (or PDP-11/70). This discrepancy

42

o
S et

4’% :/’;% s ‘m‘_ PO PRLIIT 31 e I AN G g 0 o

A 2

is directly attributable to the hexadecimal point move employed
in floating point representation on the System 370,

For purposes of illustrating this point assume that we have
two machines, both capable of representing four (4) bit
fractions. Furthermore, suppose that the first machine's
exponent value implies a binary digit move on the fraction, and
the second machine;s exponent value implies a hex diéit move
on the fraction. After an arithmetic operation, but before
rounding occurs, assume a result of .000112 is developed. In
the terminology of [4] for the first machine we have e,=-3,
the fraction portion of the A register as .1100, and the X
indicator off. For the second machine, eA=0, the fraction
portion of the A register as .0001 (or '116) and the rounding
indicator X on.

Assume an upward directed rounding, and examine the
results of rounding. For the first machine the X indicator is
off implying the machine can exactly represent the result.
Thus, rounding is not done and has no effect. For the second
machine, however, the indicator X is on, and rounding would
occur yielding a result of .0012. A downward directed rounding
on the first machine would yield the same answer, but .0001,
on the second machine. From this analysis it can be observed
why the System 370 produces wider intervals than the DEC System
10 and the PDP-11/70.

This fact also influences results in normal floating

point arithmetic. In general one can expect the System 370 to

43

s A)

T R Y 1Y

-

sl il il

produce less accurate results than machines which have a bit move

on the fraction.

On the preceeding summation problem, the forward and
backward sums were alsc produced using normal arithmetic.

The widest discrepancy between the two sums on the System 10
was .3g X g8 and .B,. x 167> on the System 370. Again the
hex point move on the fraction came into play. In summary,
error control on the DEC System 10 and PDP-11/70 is tighter
than that on the System 370.

To see how serious roundoff error can affect a computation
we again tu¥n to a benchmark program supplied by Dr. Yohe [19].
In computing the roots of a quadratic equation, it is well known
that blind application of the quadratic formula can yield
very inaccurate results. Interval arithmetic can show just
how bad the error can be in the case where 4ac is small
compared to b2.

Runs were made applying the quadratic formula on the three
systems in question. The smaller root was computed using both
the quadratic formula and by dividing the larger root into c/a.
The roots were al:o computed using normal arithmetic in addition
to interval arithmetic.

Although several sets of values for a, o, and c were used,

for rurposes of illustration between the machines, we will

consider the case where:

44

S
-

- v B
A AN
8

LA

A M AT TR A S N1 A F

[,

TR B0 cntrsaa e s« o et o

B

8

a= ,186264515 x 10"
b = 1‘
c = 1.

Floating point arithmetic on the System 370 produced the smaller
root value as 120.0 using the quadratic formula. Note, that

the System 10 yielded a value of -2 for the same case. It turns
out that both valLes are nonsense, but the magnitude of the
error on the System 370 is appalling. The result does not

even have the correct sign. The System 10 value is off only

by a factor of 2, and at least it has the correct sign.

The interval results are even more interesting. The smaller
root computed via the quadratic formula and interval arithmetic
yielded [-16.,256.] on the System 370, and [-4.,0.] on the
Systen 10. These intervals are uselessly wide, but in regard
to algorithm analysis, they demonstrate dramatically how
unstable this algorithm is, especially on the System 370. The
division algorithm is very stable considering the values
processed. On the System 10, the left and right endpoints are
consecutive machine numbers-—[5763777777778,5764000000008],
which is the best possible interval that can result from an
inexact computation. Even the System 370 produced an acceptably
narrow interval--[C110000116,C0FFFFF016].

In his paper [19], Dr. Yohe also illustrates the effects
of a design flaw in the Univac 1110. That computer truncates

the addends (presumably) to 27 bits before performing an add

45

A s g e

PN

il

o s

T

P TR AT RSO

or subtract. The illustration is made by using a contrived

27 and subtracting it from 1.0 twice. On

-27

constant of 2~
the 1110, the truncation of 2 down to 27 fraction bits

(after binary point aiignment) results in subtracting zero from
1.0 twice., This difference defined the first term of a sequence
Xy and further t?rms were computed using xi=x§_1 fpr
i=2,3,...,40. Finally, to observe the effect of the truncation
error, the xi's were summed from the left and the right. The
results of running this same analysis on the System 10,

System 370 and PDP-11/70 are available at WES,

Analysis of the output yields some interesting results
about floating point arithmetic on the three computers. To
begin, compare the System 10 with the Univac 1110 [19].

Both machines have 36 bit words with an internal floating

peint represeatation consisting of a sign bit, an eight bit
exponent, and a twenty-seven bit fraction. Hence, the constant
2'27 that was used on the 1110 is valid for illustrating the

sawe point on the System 10. However, a study of Appendix C shows
that the System 10 produced a value of approximately

25.6672510 instead of 40.010 as the 1110. It has been pointed

out that the 1110 truncates before adding or subtracting and

this was the design flaw. However, on the System 10 a double
length accumulator is used in arithmetic, and so the subtraction

of 2727 from 1.0 does not yield 1.0. Note, also, that the

System 10 normal arithmetic value fell within the interval

46

il

e T Tl o S S T Sl T G e b

arithmetic value for each case. Interval arithmetic on the 1110,
however, produced an answer far better than the 1110 floating
point arithmetic.

The critical point here is that even though these two
machines have essentially the same internal representation,
normal arithmetic results on the System 10 can be expected to
be more accurate since greater precision is used in‘actually
performing the arithmetic. Both machines' interval packages
can be expected to perform the same (disregarding extended
precision functions that are used).

This example permits us to gain more insight into System
370 arithmetic. Specifically, it reveals that 40.0 was
produced as the sum in normal arithmetic, and unexpectedly,
the interval analysis also yielded an unacceptably wide interval--
[22.6668210,40.010]. Since the System 370 only has 24 fraction
bits, the use of the constant 2'27 may be questioned. However,
in normal arithmetic a four bit guard digit participates
in addition to the 24 fraction bits. One would think that the

27

28 bits combined would accomodate the value 2~ subtracted

from one. They would if the Syst=m 370 exponent value moved

a binary digit in the fraction! The hex digit move on the
fraction once again causes unacceptable results to be produced.
Recall that a normalized one would appear as .10000016 with

an expcnent of 1. The value 2'27 would appear as .10000016

with an exponent of -6. Alignment of the hex points before

Rk it
et

Ealan TR E U C e i 2 L

AR AR L KM

subtracting causes the non-zero digit of 2727 to be right
shifted. It is cléarly chifted out of the guard digit. The
value of having the guard digit is lost. Notice that the
three zero bits leading the fraction of 1.0 are not even used
in the arithmetic! In fairness, however, it is possible to
devise a constant such that the hex digit move on the fraction
does not override -the utility of the 4 bit guard digit. The
System 370 designers at least had it over the Univac 1110
designers in recognizing the need for some additional bits of
precision. But they more than made up for this in designing a
hex digit move on the fraction.

On the PDP-11/70 at least one additional bit of precision

24

is used in arithmetic and a constant of 2 “" will not produce

the same effect as the corresponding constant did on the 1110,

However, a constant of 2723

causes normal arithmetic to produce
the value of 40., and interval arithmetic to produce the value
of 40.0 on the right endpoint. The value of 40.0 on the right
endpoint is explainable due to the upward directed rounding.

On normal arithmetic, however, the 40.0 could only result by
one of two things. Either there is only one additional bit

of precision used, or if more than one is used, the CPU

performs a rounding operation. This operation is available

on the DEC System 10.

e e n e

(RSP

48

B e e

e

e
ke

sl

:

R

8. Benchmark Testing

Recommendations for error and sensitivity analysis of
algorithms can be found in [19]. Primarily, error in an algorithm
occurs due to data sensitivity. A given algorithm can be
pronounced reliable if it produces acceptably narrow intervals
for several representative sets of data. Subsequently, however,
there is always the fear that there exists data for which the
algorithm is sensitive to. Such being the case, in a production
environment where a particular situation dictates that accuracy
is of critical importance, interval arithmetic should be used
to confirm the validity of the results. This is c¢specially true
if the reliability of the algorithm has not been established
with analogous data.

As pointed out in {19], if an algorithm generates unacceptably
wide intervals for a given set of data, that algorithm should
be examined for data sensitive opera‘*ions. These operations
can be located by printing intermediate results to discover
where accuracy is lost.

Once such perturbations are found, the programmer m:y
consider one of several methods in correcting the problem [19]:

1. 1Is there an equivalent, but more stable
algorithm which can be used?

2. Is there a critical summation which could
be made more accurate by judicious choice
of the order of summation?

3. Can the critical portion be rewritten

using higher precision arithmetic
in such a way as to improve accuracy?

49

- i =

—— =

There are several handicaps in using interval arithmetic.

Widespread availability of the tool is nonexistant. However,

projects such as this one will help to alleviate this problem.

{ One can at least expect that the amount of wa.n storazge required
E to run the computation will double. This is a direct result

of converting REAL numbers to INTERVAL numbers, the?size of the
INTERVAL II package itself (59K on the System 370), and the
overhead of AUGMENT generated calls on the package. For

example, the FFT benchmark run under normal arithmetic required

128K on the System 370. Under interval arithmetic, 254K was
required to run the program. The storage increase is observed
at approximately 100%, or double the amount. On the 11/70,

the FFT benchmark would not fit in storage for 512 input points
under interval arithmetic. It would, however, under normal
arithmetic. This is why FFT with only 256 input points was

Tun.

One of the more obvious penalties of uszing interval arithmetic
is that of increased CPU time. With the absence of hariware
b instructions that perform the r.unding operations described in
[4], software must he written to simulate them. Every interval

arithmetic operation performed in INTERVAL II incurs the

B TR
[P STV,

overhead in CPU time required to simulate the operation in

i software. To get some idva of how dramatic this increase can
be examine Table 1. Using approximate figures, the System 10
increase is a factor of 27; on the System 370, a factor of 50,

and a factor of 2 on the PDP-11/70. i

A 18)

s i i

50

4 acten bt

™ o (e

 ———— - - e S Lyvs S REARIS e ATRRa o - m - - ”e

2
«

WAL IR T TP MY o
.
P
;Wm'mﬂﬁm‘w<rt<*:»n~w-~m«w oy e

Table 1

CPU* Time (in seconds) for the FFT Benchmark Program

Normal Arithmetic Interval Arithmetic
System 10 3.97 105.9
System 370 10.06 471.2
R L3]
PDP-11/70 32.60 72.4

* The time given includes that required for compiling, linking/loading,
and execution. For interval arithmetic, AUGMENT CPU time

is also included.

**FFT was processed for only 256 input points on the 11/70 due
to storage limitations. The other svstems processed FFT
for 4096 input pointe,)

51

SN - AR = AN

o

i3

AP

ot

This time on the 11/70 is shaded by the inordinate amount
of time it takes to task build. Ignoring this time, the increase
in CPU time of interval arithmetic over normal arithmetic is a
factor of 10. This relatively small time factor on the 11/7¢
is an indication of how slow normal arithmetic is on that
hardware anyway, This is very important if one considers the
BPA arithmetic primitives on this machine (multiply; divide,
and shift instructions had to be software simulated), Tables
2 and 3 give a breakdown of the figures in Table 1. The
dramatic increase in the System 370 CPU time is due in part to
the inefficiency of the BPA primitives noted in Part I. However,
there are many instances where the instruction set on the System
370 falls short in comparison to the System 10. For example,
handling a simple exchange operation on the System 370 takes
three instructions and only one instruction on the System 10.

As Dr. Yohe points out it is no longer regarded as an
"yinpardonabie sin'" to have software inefficiencies, especially
considering the rate at which hardware prices are falling,
and " . . . the extra cost may seem small when balanced against
the possible failure of a structure [19]."

Analysis of the arithmetic results of running the FFT
benchmark program yielded the following observations. Since
only one set of input data was processed, it is not advisable
to pronounce the algorithm reliable as defined earlier. The

input data points range in -1 < x < 1 with a magnitude of

52

bk 2 E A i, e

Table 2

Individual Program CPU Times (in seconds) for FFT under
Normal Arithmetic

System 10 System 370 PDP-11/70

fortran Compiler .85 3.10 5.15

Linker/Loader 1.38 1.00 25.42

FFT Processing .74 5.96 2.04

- Total 3.97 10.06 32.6
Table 3

Individual Program CPU Times (in seconds) for FFT
under Interval Arithmetic

i

|

g System 10 System 370 PDP-11/70
i

: Augment Processing 16.77 22.19 16.77%
3 Fortran Compiler 1.48 5.85 7.41
Linker/Loader 1.96 3.58 27.01
L FFT Processing 85.69 439.48 21.21
] Total 105.9 471.2 72.4

* Augment on the DEC System 10 was used as a host processor.
See Part I.

53

il 2 2

ROFRYE

v i
o e b

107}

on FFT under normal arithmetic. The method of computing
the input data points using interval arithmetic produced
intervals no wider than .001219276,, on the System 370 and
.000122070310 on the System 10. FFT under normal arithmetic
generated complgx numbers with a modulus of magnitude ranging

7 6 0 1070 on

from 10°° to 107’ on the System 370, and 10°
the DEC System 10." Under interval arithmetic, the widths of

the intervali valued moduli were no wider than .00106130710

on the System 370 and no wider than .00067799510 on the System

10. Considering the magnitudes of moduli under normal arithmetic,
the widths of the intervals are not too encouraging. However,

the widths reported on above are the widest that occurred.

By far the majority of the output points had modulus interval

3 on the System 370 and 104 on the

widths of magnitude 10~
System 10. Also, the output interval widths seem reasonable
considering the widths of the input intervals. This is
reassuring and would indicate that this particular FFT
algorithm is not sensitive to the sample test data.

Earlier, the term “acceptably narrow" intervals was
used in reference to determining data sensitivity of a given
computation. It can be observed from the discussion above
that exactly what is acceptable and what is unacceptable is
not clear cut. There exists a grey area where indecision may
occur. After experience is gained in using the tool, it might

be judicious to determine beforehand what an acceptable interval

54

iy

G
P

SRERTRY DD AT U See] w0 § aprRan G b see e

b3

width would be, and then run the computation under interval
arithmetic,

Dr. Yohe supplied benchmark programs to test the performance
of the SIN, COS, and TAN routines. The results of running this
benchmark are available at WES, as are the results of running a
second benchmark program supplied by Dr. Yohe. Theseabgnchmarks
tested the mathematical functions using INTRAP for output. The
output was examined for consistency. As expected, the DEC
System 10 results were more accurate than the System 370,
However, both systems generate results that are agreeable in the
first seven significant digits, The input intervals staircase
up to a certain point, and then staircase down with the endpoints
of adjacent intervals overlapping. In a similar manner, the
output intervals slightly overlap on adjacent endpoints.

On the testing of EXP, the input interval [-1. x 103

» 0.1
generated distinctly different results on the System 10 and
System 370. The former produced an interval of [0,1], and

the latter produced an interval of [0, min]. These results
are explainable in terms of the interval arithmetic coastants
for the System 370. The constant EXPMNA is valued at min on
the System 370 when it should be valued at -AE.AC4EI6.
In constructing these constants it was not understood that
negative numbers were to be included in the meaning of the

term "smallest."” The error is easy to correct.

55

9. Comparison of the Machines

As pointed out earlier, the hex point move on the fraction
causes results to be less accurate on the System 370, The
System 10 is movre accurate than the 11/70 considering the
difference in the number of fraction bits in thei£ internal
floating point representations. This pertains to both normal
floating point arithmetic and interval arithmetic., Aside
from accuracy comparisons, it is important to consider timing
relationships between the machines due to the extra cost
involved in using interval arithmetic,

The validity of timing ccmparisons in this section is
dubious considering the discrepancy that exists in the
efficiency of the BPA primitives. It should be noted that

the BPA primitives on the 1110 are very efficient compared

to those on these three machines. To observe this, one only

has to examine the instructions available on the 1110 used

to implement the primitives. This should affect timing

comparisons with the 1110.
| Table 4 provides timing information for eight benchmark
programs that were run on all three machines. The table contains
b for each wmochine and each benchmark four CPU processing times

(in seconds)--AUGMENT processing, Fortran compiler processing,

e

linker or loader processing, and the benchmark processing

R

time (under interval arithmetic). AUGMENT processing time on

the 12/70 is the same as for the System 10 since that machine

L
R A s Fi A L 5 a1 e

56 i

A
PO R N

Table 4

CPU Time (in seconds) for UT-Arlington Benchmark Programs

Augment Fortran Linker/ Program
Processing Compiler Loader Processing
INTERVAL 11 IBM 370 — 4.70 2.69 2.58
Test driver DEC 10 — .85 1.38 .74
PDP 11/70 —_— 6.11 40.44 1.45
Plat Map IBM 370 7.66 2.15 2.84 .3
Problenm DEC 10 7.51 .89 1.38 .08
PDP 11/70 7.51 1.46 30.01 .12
Interval IBM 370 5.14 .83 2.64 3,26
Ractorial DEC 10 $5.93 .46 1.38 1,31
i PDP 11/70 5.93 .45 30,23 2.11
| 128 . IBM 370 5.75 1.11 2.54 10.68
! Z 1 ¢! DEC 10 5.93 .31 1.38 2.47
i — PDP 11/70 5.93 1.21 26,46 10.55
i=0 X
40 IBM 370 6.63 1.23 2.90 .65
2: 2 DEC 10 6.12 .36 1.36 .19
X.=X. PDP 11/70 6.12 1.30 25.00 .33
. i 7i-1
1 i=2
3 Roots of IBM 370 7.52 1.90 3.07 2.25
1 Quadratic DEC 10 7.42 .58 1.40 .57
PDP 11/70 7.42 2.20 26.04 2.04
,'; Mathematical IBM 370 7.40 2.23 2.87 18.18
El Programs DEC 1¢ 6.56 .55 1.38 9.48
;1 PDP 11/70 s 56 3.058 25.24 20.02
:§ SIN, COS IBM 370 6.97 1.66 2,98 1.92
and TAN DEC 10 6.44 .40 1.53 .77
4 PDP 11/70 6.44 1.56 24.4 1.51
3
3 Total IBM 370 47.07 15.81 22.53 39.83
. DEC 10 45.91 4.4 11.19 15.61
E : PDP 11/70 45.91 17.34 227.82 38.13
E ;
» i
f ;
1 i
E» 3
’ 57 !
N e, :‘%j* n -:!-’? :

was used as a host processor. The table summarizes the four

processing times via a total for each system.

Examining AUGMENT time, it can be observed that there is

] not an appreciable difference between the System 10 and the

System 370. On all other figures, however, the System 10

CPU time is significantly less. The System 10 compiler,
linking/loading operation, and benchmark time are ;il at

least half that of the System 370 and the PDP 11/70. The

KL10 processur and scftware system are undoubtedly faster than

T the System 370/155 operating under OS/MVI. The high linker/loader
time on the 11/70 is probably due to the fact that only one

disk is configured into the system.

Dt gatean ler et e

ORIV

58

?’Wmﬁ?‘"v‘%”*‘ﬂ%mww e e

.

10. Recommendations and Conclusions

Using interval arithmetic as prescribed in the INTERVAL
11 package is simple because of the AUGMENT preprocessor.
Computer runs illustrute that interval arithmetic can show the
instability of an algorithm for a given set of data.

Thoughtful use of PRINT statements and interval arithmetic can

reveal sensitive parts of an algorithm. On the other hand,

use of interval arithmetic can establish a high level of
confidence in an algorithm for a given set of data. Proper
testing with representative data sets can establish algorithm

reliability, There is a peralty of increased CPU time and

main storage requirements in using interval arithmetic,

The DEC System 10 appears to be the superior machine
taking all factors into consideration (ie., time, storage,
accuracy). The System 370 appears to be the worst machine
considering the accuracy of results because of the hex point
move on the fraction.

Definite problem areas are: storage limitations of the
11/70; confidence in the results of the interval package; and
interpretations of the interval widths when the decision is
not clear cut.

Specific areas for further work besides the obvious ones

of continued benchwark testing and more experience in using

the tool include the following:

59

T P T . e e e e T £

hserm san

Some computer-assisted training modules should be
prepared to provide ready instruction on how to use
AUGMENT and the INTERVAL package.

A validation package should be constructed that can
be used to verify the correctness of the INTERVAL 11
package with its primitives,

Requirements exist for a double precision interval
arithmetic package. These requirements should be
considered to determine whether or not to implement
such a package. .

Similar to item 3, except the requirements are for
a complex interval type.

60

PART 1II: EVALUATION OF BENCHMARK ALGORITHMS
USING INTERVAL ARITHMETI(C

i1, Introduction

This work is a continuation of the efforts described in Parts
I and II. WES benchmark programs GAUSE, BANSOL, SESOL, and SPLINE
have been processed under normal arithmetic and interval arithmetic
on three systems--the DEC System 10, IBM System 370, and DEC
PDP-11/70, Here, we report on accuracy, storage requirements, and

timing of these benchmarks and make recommendations and conclusions.
Summary Remarks

* Interval arithmetic should be used (as any tool would be)
where accuracy is of critical importance.

* Because of the known numerical stability of Gaussian pro-
cedures in linear equation solving, the use of interval
arithmetic is not recommended in the case of 1outines
GAUSE, BANSOL, and SESOL.

* If accuracy is of critical importance, the back substitu-
tion portion of Gaussian elimination should be considered
data sensitive because of the summations involved.

* Interval arithmetic is expensive to use in terms of com-
puter time, main storage, and personnel time spent in
error analysis,

Lt it

* Some reasonable means of estimating the cost of using in-
terval arithmetic in a given situation should be developed.
3 , These costs would bc important in the decision process of
, determining whether or not interval arithmetic would be
worth the effort or not,.

e

* Techniques of accuracy extension on short word length
machines should be examined, in particular the extended
precision package discussed in [20].

b dil gl

satgltid

HeAr e e

61

ettt By Ll s O

—.
PRTR TR RSO0 1§01 05 wtpon va ke s 25 p

Wbl oy el 1
t
{

[

12. Benchmark Accuracy

The approach taken in accuracy determination was to process the
éﬁven benchmarks in normal arithmetic and then under interval arith-
metic, The interval results were checked to insure they contained
the normal arithmetic results., The widest interval widths were com-
puted as well as the average width for each benchmark. These re-

sults are given in Table 5.
Table S

WES Benchmark Accuracy

Benchmark Result Range Widest Interval Average Width
SPLINE

S/370 100 - 102 0.1062012E-01 0.4344657E-02
S/10 10° - 102 0.1118898E-02 0.4972159E-03
11/70 100 - 102 0.3030777E-02 0.1414956E-02

GAUSE (100 x 100 set of data)

-6

S/370 1078 - 1071

0.6205976E-02 0.4425270E-03

6

S/10 10°% - 107!

0.3088159E-03 0.2275300E-04

The question then arises as to whether or not the interval
widths are acceptably narrow or not. Considering the numerical sta-
bility of Gaussian procedures, and the results ranges, the intervals
are probably acceptable, The interval programs used were natural
extensions of the normal arithmetic programs. No effort was made to
eliminate dependencies that occur in the interval package. Other-

wise, the interval widths would even be smaller. Without a specific

62

situation to consider, it is hard to say for sure whether or not
the widths are acceptable,

Because of the known numerical stability of Gaussian proce-
dures, we recommend that interval arithmetic not be used in the
case of these benchmarks, However, interval arithmetic should be
used even in this case if accuracy is of critical importance. This
is because the order in which the terms of a summation are added
can affect the accuracy of a result, and the back substitution pro-
cess of Gaussian elimination can be data sensitive. This is a pos-
tible failure point within these benchmarks.

One other remark on accuracy is important. The 100 x 100 set
of data processed through the Gaussian procedures generated the
interval widths given in Table 5. However, if one compared the
solutions, they were distinctly different! How can this discrep-
ancy be explained considering that the interval widths are accept-
ably narrow? The answer Jies -~ the fact that an interval input/
output package was not used in reading in the 100 x 100 data.

Since the inputs were not properly bounded, we essentially solved
separate systems on the different machines. This example high-

lights the importance of having an interval I/0 package.
Benchmark Timing

Interval arithmetic is expensive to use in terms of CPU time,
This is because every interval operation incurs the overhead in
CPU time required to simulate the operation in software. To see
how significant these times are, consider the figures in Table 6.
For each benchmark, on each system, CPU times are given ijr each
program under both normal arithmetic and interval arithmetic.

Also given in Table 6 are factors of increase in CPU time ii. going

63

IRV

L s

s 4

A 3 e e Wb T X AN St

Table 6

Timing (in seconds) of WES Benchmark Programs

Fenchmark/
System Augment Compiler Loader Program Total Increase
SPLINE
$/370
Normal - 1.72 0.95 0.16 2.83 7
Interval 9,95 2.82 3.02 2,72 18.51
$/10
Normal - 0.48 0.33 0.08 0.89 12
Interval 8.83 0.88 1.43 0.60 11.49
11/70
Normal - 2.00 12.40 0.05 14.45 3
Interval 8.85 3.15 25.41 2.16 39,30
SESOL
§/370
Normal - 8,54 0.98 2.84 12.36 5
Interval 44,12 13.14 3.77 3.87 64.9
S$/10
Normal - 2.25 0.45 0.53 3.23 11
Interval 29.83 3.25 1.58 0.70 35.36
11/7¢
Normal - 14,3 - 0.13 14.43
Interval 29.83 18.23 - (Would not fit in storage)
GAUSE
S/370
Normal - 3.92 1.01 0.39 5.32 6
Interval 22.25 5.81 3.14 1.04 32.24
S/10
Normal - 1.08 0.40 0.13 1,61 13
Interval 17.33 1.95 1.61 0.24 21,13
11/70
Normal - 6.40 13.51 0.15 20.06 2
Interval 17.33 10,26 20.16 0.56 48,31
GAUSE (130 x 100)
s/370
Interval 22.09 5.77 3.12 25:08.16 25:39.14
S/10
Normal - 1.03 0.38 8.45 9,86 55
Interval 17.03 1.60 1.53 8:45.00 9:05.16
64

from normal arithmetic tc interval arithmetic., Using approximate
figures, the DEC System 10 increases by a factor of 12, the System

370 by a factor of 6, and the PDP-11/70 by a factor of 3.
Benchmark Storage

Another handicap in using interval arithmetic is that one can
expect the amount of main storage required to double. Table 7
contains the storage requirements for the benchmarks on the

Svstem 370 and PDP-11/70.

Table 7

Storage Requirements of WES Benchmarks

CAUSE
(100 x 100
SPLINE SESOL GAUSE Set of Data)
: 7370 1770 $/370
; Normal 30K 10K 52K 16Kk 36K 11K 74K
f’ Interval 100K 22K 128K >32K 108K 25K 224K
: Increase 3 2 2 2 3 2 3

™

Co

iy
SR

BT Y AW s

65

SRR ITH ¢ v ey

i
|
|
|

C e D e -

LS s
oot el
-y SOt
‘.7. RPN e
. B TR
e A RIS

Y

AT e ;L

ppsyre e

13, Conclusions and Recomr.ndations

A problem area that remains is the lack of some quantitative
means of determining the costs of using interval arithmetic on a
given system. From the results of this Part and those in Parts I
and II, one can estimate CPU time and main storage requirements
for interval arithmetic if those figures are known fqr normal
arithmetic, However, the costs of writing other than a natural
interval extension program should be estimated. This would re-~
quire programmer time in the elimination of interval package de-
pendeancies. Also, numerical aaalysts' time should be estimated
in determining roundoff error and trunction error., This would
leave inherent error as the essential error source, and interval
widths could be appropriately evaluated.

Techniques of accuracy extension on short word length ma-

chines such as [.* should also be considered.
66
2 > - *
-, }?ﬂ"\ At »:t’r‘ [
- > *g"s};. .y

REFERENCES

[1] Crary, F. D., "The AUGMENT Precompiler; I: User Informa-
tion," The University of Wisconsin-Madison, Mathematics Re-
search Center, Technical Summary Report No. 1469, Dec 1974.

(2] » ""The AUGMENT Precompiler; II: Technical Documen-
tation,” The University of Wisconsin-Madison, Mathematics Re-
search Center, Technical Summary Report No. 1470, Oct 1975,

[3] , "Guide for AUGMENT Implementation," The Univer-
sity of Wisconsin-Madison, Mathematics Research Center, Mar
1876.

[4] Yohe, J. M., "Roundings in Floating-Point Arithmetic," IEEE
Trans. on Computers, Vol C-22, No, 6, Jun 1973, pp. 577-5886.

{5] Ladner, T. v. and Yohe, J, M., "An Interval Arithmetic Package
for the UNIVAC 1108,'" University of Wisconsin-Madison, Mathe-
matics Research Center, Technical summary Report No. 1055,

May 1970,

[6] Binstock, W., Hawkes, J., and Hsu, N. T., "An Interval Input/
OQutput Package for the UNIVAC 1108," University of Wisconsin-
Madison, Mathematics Research Center, Technical Summary Re-
port No, 1212, Sep 1973.

[7) Yohe, J. M., "Guide to Implementation of the Interval II
Package on Other Hardware," University of Wisconsin-Madison,

\ Mathematics Research Center, Jun 1976,

[8] DEC PDP-11/70 IAS User's Guide. (Order No. DEC-11-0IUGA-A-D.)

{9] DEC PDP-11/70 FORTRAN IV-Plus User's Guide, (Order No.
- DEC-11-LFPUA~A-D,)

[10] DEC PDP-11/70 PDP-11 FORTRAN Language Reference Manual,
(Order No. DEC~11-LFLRA-B-D,)

[11] DEC PDP-11/70 IAS Task Builder Reference Manual. (Order No.
1 DEC-11-0ITBA-A-D.)

[12] DEC PDP-11/70 ODT Reference Manual, (Order No.
DEC-11-010DA~A-D,)

. {13] DEC System 10 FORTRAN-10 Programmer's Reference Manual.
H (Order No. DEC-10-LFORA-~D-D.)

; [14) DEC System 10 Operating System Commands Manual. (Order No.
DEC-10-0SCMA-A-D.)

{15] UNIVAC 1108 Processor and Storage Reference Manual. (UP-4053.)
{16] UNIVAC 1108 Assembler/Programmer's Reference., (UP-4040.)

e Y P

[17] 1IBM System 370 OS FORTRAN IV Library Subprograms. (GC28-6596.)

67

AR—
IEETEIANDI G oY S0 2075 3y e 0

T M T

{18] IBM System 370 OS Linkage Editor. (C28-6538.)

[{19] Yohe, J. M., "Application of Interval Analysis to Error Con-
trol," University of Wisconsin-Madison, Mathematics Research
Center, Aug 1976,

[20] , "Interval II Package," University of Wisconsin-
Madison, Mathematics Research Center, Jul 1976,

[21] Wyatt, W, T., Jr., Lozier, D. W., and Orser, D. J., "A Porta-
ble Extended Precision Arithmetic Package and Library with
FORTRAN Precompiler," ACM Transactions cn Mathemat1ca1 Soft~
ware, Vol 2, No. 3, Sep 1970, pp. 209-251.

The following are additional computer listings and runs, for
all three computer systems dealt with in the report, they are
available from the Automatic Data Processing Center, U. S. Arnmy
Engineer Waterways Experiment Station, P. O. Box /31, Vicksburg,
Miss. 39180:

AUGMENT Machine Dependent Primitives

Interval II Machine Dependent Primitives

Interval II Machine Dependent Constants

Test Driver for Interval II (supplied by Dr. Yohe)
Test Driver for AUGMENT Primitives (supplied by Dr. Crary)
Factorial Problem

Dr. Yohe's Plot Map Problem)

FFT (using normal and interval arithmetic)
Summation of (1/X)**I, 1=0,...,128

Roots of a Quadratic Equation

Rounding and Truncation Errois in Addition

Test of SINE, COSINE, and TANGENT Routines

Test of Mathematical Functions

Matrix Inversion

Gaussjian Elimination with Partial Pivoting
Gaussian Elimination with No Pivoting

SPLINE

SESOL

-

68

- - - e v s % < e et s, <o

AT ST VITATWRNETE ¥

il rvﬂ T

bilatiabic st SRRl A it s st s ol o -
:

o o AR etk A3 rmise s 0

IOLDPERTES ZIRIRSEY | O >0 1w

APPENDIX A: REMARKS ON SOME ITEMS
NOTED IN THIS REPORT

by Dr. Fred D, Crary

The list of remarks that follows is keyed to the main text of
the report. Paragraph 1 is the first paragraph beginning on the
page. Line 1+ is the first line on the page, 1- is tpe last line,
n+ is the n-th line from the top, and n- is the n~th line from the

bottom of the page.

Page 7, para 1: The syntax errors were caused by our faulty key-
punching from a correct listing. The implementation of ORDER
for the 370 version was suggested by a 370 user. The various
“IF's" in the documentation of STRWDS suggested possible im-
plementations of string cells and gave the formulas under
these implementations; this description will be revised.

Page 7, para 2: The difficulties with routines MAIN and MOVNUM
will be corrected in Version 4L by inserting STOP statements.
STOP statements will also be inserted at other points where
the called subprogram does not return.

Page 9, para 2: The constant 4250000 was intended to be approxi-
mately the largest x such that 10x+9 did not overflow. It
appears to have been incorrectly computed (even for full-word
integers). Dr. Ward is correct in concluding that this is an
overflow test.

Page 9, para 4: The decision table columns other than 12 are for
nonoperators and operators which require special handling.
Column 12 is for all "normal" single character operators. It
happens that "/" is the only standard operator that does not
require special handling. If other such operators are de-
fined via the Description Deck, they are allocated toc Col-
umn 12 also,

Page 10, line 3-: This will be changed to IF (---) J = +1 in
Version 4L.

Page 11, line 2+: These warning messages are reasonable responses
to the use of the DO index as an argument to a subroutine.
In no case is the index altered by the subroutine,

Page 13, line 3-: An attempt will be made to remove the apparent
recursion noted.

Page 16, para 1: There is no problem with DOISN because the in-

ternal statement numbers begin counting with zero in each
program unit and it seems uniikely that 32,000 of them will

Al

——y - = [P

e p—

e i

&)

M NP BT S e pn

be needed. There is a possible problem with DOESN; however,
this should be caught by the (corrected) overflow test in

NUMIN.

Page 19, para 3: Some additional specifics on the tuning desired
would be useful,

Page 31, lines 8+ and continuing: It seems as though this problem
is easily solved. If the supporting package is written as-
suming REAL arrays of length 2, simply describe the package
to AUGMENT with a "DECLARE REAL (2)" clause rather than
"DECLARE COMPLEX",

Page 32, lines 1+ and continuing: ANSI FORTRAN does not recog-
nize tab characters; thus, no provision was made to include
them in AUGMENT. EQUIVALENCE and DATA statements are not
processed because it is difficult (if not impossible) to de-
termine what effect is intended in all cases. Similarly, the
interaction between I/0 statements and FORMATs is very diffi-
cult to unravel. This is especially true with an essentially
one-pass preprocessor,

Page 34, para 1: This observation is inherent in interval arith-
metic, If an interval always had an unambiguous sign,
AUGMENT would permit the three-branch IF (see pages 54, 62,
and 90 of the AUGMENT User Documentation [1]).

Page 35, para 1: This seems to be an overzealous compiler. Is
this a warning or a fat:l error?

Page 39, para 1: This problem is due to some side effects on the
symbol table during the scan of I/0 lists for nonstandard
variables, The side effects occur only in some cases, A
correction is already available and will appear in Version 4L.
An interim solution is to use copy mode for all I/0 statements
(see page 34 of the AUGMENT User Documentation [1]).

Page 39, para 2: The facility requested already exists in the
SOURCE option control (see page 30 of the AUGMENT User Docu-
mentation [1%}. See the output of the test deck supplied
with AUGMENT for an example of the output obtained. (A copy
of the test deck output is cn each microfiche with the
AUGMENT revision,)

This comment raises a question absut debugging. Do we nor-
mally inspect the machine language output of the FORTRAN
compiler in order tc debug FORTRAN pregrams? 1Is this not a
similar situation?

A2

e P e it e

PLELH

r tusitgh . :
e benitgtbag b [R AN

JESORT ¥ -

TR, R AR R TR S T AP o Ty

b

In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced

beiow.

A ...

Ward, Ronnie G i
Implementation and evaluation of interval arithm.si. soit-

ware; Report 4: The IBM 370, DEC 10, and DEC PDP-11/70
Systems / by Ronnie G. Ward, Department of Computer Science,
University of Texas at Arlington, Arlington, Tex. Vicksburg,
Miss. : U. S. Waterways Experiment Station ; Springfield,
Va. @ available from National Technical Information Service,
1979.

68, 2 p. ; 27 cm, (Technical repoi. U. S. Army Engineer
Waterways Experiment Station ; 0-79-1, Report 4)

Prepared for Office, Chief of Engineers, U. S. ’my, ¥ash-
ington, D. C., under Contract Nos. DACA39-76-M-0247 and
DACA39-76-M-0356.

References: p.67-68.

1. Arithmetic. 2. Computer systems programs. 3. Evaluation.

4. Interval arithmetic. I. Texas. University at Arlington.

Dept. of Computer Science. II. United States. Army. Corps of

Engineers, III. Series: United States. Naterways Experiment

Statjon, Vicksburg, Miss. Technical report : 0-79-1, Report 4.
-79- port 4

